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1 Introduction

BiotSavart is a magnetic field calculating program de-
veloped by Ripplon Software Inc. It has been avail-
able for Macintosh computers since 1991 and for Win-
dows computers since 2007. This note describes ver-
sion 4.0 of BiotSavart, which was released July 2007.

BiotSavart can calculate the magnetic field, force,
and linked flux, for a three-dimensional system of
conductors with specified current. It does this in an
intuitive and interactive way that makes it valuable
for designers who wish to explore various possibili-
ties. BiotSavart has been used for diverse applica-
tions including magnetic traps for neutral atoms and
molecules (e.g., [1]), magnetic resonance imaging [2],
and antennae for RFID [3].

The field calculations in BiotSavart are founded on
closed-form expressions for the magnetic vector po-
tential A and the magnetic flux density B sourced by
loops and line segments. These fundamental sources
are summed to represent more complicated conductor
objects. These conductors may be arbitrarily placed
in three dimensions. The conductors are connected
to current supplies so that the current through sev-
eral conductors may be varied together. A bias mag-
netic field can be superimposed on the configuration.
The resulting magnetic field may be sampled and dis-
played in various ways, using probe objects. In the
next sections describe the available conductors and
probes.
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2 Conductor types

The available conductor types are Loop, Solenoid,
Revolved, Wire, and Racetrack.

The Loop object is a collection of an arbitrary
number of coaxial loops. These loops share a common
wire diameter.

The Solenoid object is a coil of rectangular cross
section. The shape of the solenoid is specified by giv-
ing its inner radius, outer radius, and length. Setting
the inner radius equal to the outer radius gives a thin
solenoid. Setting the length equal to zero gives a pan-
cake solenoid. The number of turns is specified, or it
can be calculated from a given wire diameter. Con-
versely, it is possible to calculate the wire diameter
required to give a desired number of turns.

The Revolved object is surface created by revolv-
ing an arbitrary path about an axis. The current that
flows on the surface of this object is represented by
current loops coincident with the surface. The sur-
face current density can be chosen to be distributed
as the current density of an axially magnetized body
or to be distributed uniformly along the surface.

The Wire object is a sequence of straight line seg-
ments that approximates current flow along an arbi-
trary path through space. A simple path description
language is used to describe the path, which can in-
clude gentle turns and spirals.

The Racetrack object is a bulky conductor
shaped like an elongated solenoid. It is used in par-
ticle accelerators and magnetic traps.
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Figure 1: Linear probe window showing the profile
of magnetic flux density component Bz and vector
potential component Ay through the thickness of a
solenoid. The numbers at the bottom describe the
selected point.

3 Probe types

The objects that calculate magnetic fields are called
probes. The available probe types are Tracer, Linear,
Planar, and Volumetric.

The Tracer probe object calculates the path of a
magnetic field line starting from a specified point in
space.

The Linear probe object generates a plot of the
field versus coordinate along an arbitrary path (usu-
ally taken to be a straight line). Quantities that can
be plotted are Ax, Ay, Az, |A|, Bx, By, Bz, |B|, or a
function specified by the macro language. The plots
are interactive, in the sense that by clicking with the
mouse on any point the program will display the value
of the quantity plotted. Scrolling through the values
with the arrow keys is also possible.

The Planar probe object generates a contour plot
of the field on a specified planar surface. Any of the

Figure 2: Loop object (with two loops of opposing
current) modeling a magnetic trap. A Planar probe
is being used here to plot contours of the trapping
potential.

quantities described above may be plotted. The con-
tour plot appears superimposed on the graphical dis-
play of the conductors, as shown in figure 2. It may
also be plotted in a window of its own.

The Volumetric probe object calculates the mag-
netic field in a rectangular volume. From this data it
can display arrows indicating the direction and mag-
nitude of either the vector potential A or the mag-
netic flux density B. It can also display a level-set
surface of any quantity. A slider control lets the value
of the level-set be adjusted continuously in real time.

4 Field line tracing

To trace field lines, the Tracer probe object uses
a Runge-Kutta scheme to integrate the fundamental
equation

dx

ds
=

B

|B|

where s is the arc length along the field line. The
length of the field line and the integration step size
are under user control. This produces a field line
that is superimposed on the configuration display as
shown in figure 3.
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Figure 3: Magnetic field line of a square loop bent
out of its plane. The field line is traced by a Tracer
object.

5 Inductance calculations

The flux Φ linked by a conductor is obtained from
the vector potential by the volume integral

Φ =
∫

dV A · W

where W is the winding density vector (if the current
in the conductor were set to I the current density
would be IW ). The integral is represented by a sum
over what are known as the M points, whose density
can be adjusted by the user. For a filamentary con-
ductor the M points are distributed along the length
of the conductor. For a solenoid the M points are
distributed across the cross section in a rectangular
grid, and also along the current path in angular steps
through the full circle of rotation. The grid density in
the cross section and angular direction can be speci-
fied by the user. For an axially symmetric conductor,
like a solenoid, also defined are the L points which are
the M points of one radial section; the L points are
sufficient to calculate self-inductance.

The self-inductance of a conductor is found by cal-
culating the linked flux Φ when only that conductor

has current in it; the self inductance L is then given
by L = Φ/I where I is the current in the conductor.
There is a button for this calculation in BiotSavart.

The mutual inductance between two conductors 1
and 2 can be calculated by setting the current in all
conductors except conductor 1 equal to zero, setting
I1 = 1A, and calculating the flux Φ21 linked by con-
ductor 2. The mutual inductance M21 is then given
by M21 = Φ21/I1. BiotSavart provides a button to
perform the linked-flux calculation. In the case of
coaxial solenoids, mutual inductance calculated by
BiotSavart agrees to within 0.5% with the values cal-
culated for all examples given by Babic and Akyel
[4].

BiotSavart calculates linked flux flux (and hence
mutual inductance) even in geometries that are not
axially symmetric.

6 Force and torque

A conductor in magnetic field experiences a force F
and torque N given by

F =
∫

dV J × B

and1

N =
∫

dV (x − x0) × (J × B)

where dV is a volume element of the conductor, J is
the current density in the volume element, and B is
the magnetic flux density there. Since a conductor
can not exert a force or torque on itself, the inte-
grals above are performed using the magnetic field
generated by other conductors. Numerically the in-
tegration is performed in a manner analogous to the
calculation of linked flux, by summing over the M
points.

1The magnetic torque acting on a conductor is given by
BiotSavart calculates the torque about the “current center”
defined by

x0 =

∫
dV x|J |

/∫
dV |J |

For symmetrical conductors x0 is the center of symmetry.
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7 Macro language

The macro or calculator language in BiotSavart is
used to plot user-specified functions of position and
field. It is an operator language characterized by the
absence of any hierarchy. Operations are grouped
right-to-left, as in the language APL. Built-in oper-
ators include most of the C math library functions,
with the same name (sin, sqrt, etc.). An example of
a mathematical expression and its equivalent macro
expression:√

xAy − yAx sqrt (x*Ay)-y*Ax

This produces field lines in an axially symmetric sys-
tem if plotted as contours on a surface that is a radial
section (e.g., the x-z plane). The square root ensures
that the contours are uniformly distributed where the
field is uniform.

Quantities available for use in macro expressions
are the components and magnitudes of the magnetic
field (Bx, By, Bz, B, Ax, Ay, Az, A) and position (x, y,
z), as well as arc length (s) for linear probes.

Macro expressions of more than one line evaluate
line by line, and the final line is the result that is
used. This allows setup of variables to be used in the
final line. For example, a macro to plot the potential
energy of a Cs-133 atom in a magnetic trap (including
gravity) in units of micro-Kelvin is:

m=132.905*1.67e-27
g=9.81
mu=9.27e-24
k=1.38e-23
1e6*((mu*B)-m*g*z)/k

8 Development

Development of BiotSavart is focusing on magnetic
materials, a feature that will be released at version
4.1. This represents a major leap in the evolution
of the code, because to solve magnetic materials re-
quires a self-consistent calculation of the magnetiza-
tion induced in the magnetic material (magnetiza-
tion generates magnetic field that, in turn, influences
magnetization). The model we have adopted initially

is to dice the space containing the magnetic material
into cubic cells, some partially filled by a polyhedron.
If in each cell the magnetization is uniform then the
generated fields A and B can be calculated in closed
form. At long range a dipole approximation is ade-
quate. The field at any point is calculated by sum-
ming over all cells, which is done efficiently using a
hierarchical multipole method. The self-consistency
requirement is that the magnetization M should be
equal to the equilibrium M(B) for the calculated B.
A conjugate gradient algorithm is used to find the
self-consistent solution, also in the presence of non-
linear materials.
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